
Principles	of	access	control:
Economy	of	mechanism	

Simple	designa.
1.

Fail-safe	default
Default	is	no	accessa.

2.

Complete	mediation
Every	access	to	every	object	must	be	checkeda.

3.

Open	design
Security	does	not	depend	on	secrecy	of	mechanisma.

4.

Separation	of	privilege
System	that	requires	2	keys	is	more	robust	than	system	which	requires	1	keya.

5.

Least	privilege
No	unnecessary	privileges	should	be	assigneda.

6.

???
???a.

7.

Challenges:
Can	we	express	all	requirements?-
Does	the	system	not	significantly	impact	performance?-
Is	every	action	checked	by	the	guard	and	covered	by	the	policy?-
Does	the	mechanism	correctly	enforce	the	policy?-

Discretionary	access	control
Users	have	full	control	over	objects	they	create	and	can	pass/delegate	their	privileges	to	other	users.
Access	rules	establish	which	actions	can	be	performed	by	what	subject	on	what	object
Granting/revocation	of	privileges	is	regulated	by	an	administrative	policy
Access	to	resources	is	based	on	the	identity	of	users.

Lampson	model
Set	of	subjects	𝑆,	set	of	objects	𝑂,	access	matrix	𝐴 (𝑆 rows	× O columns)
Cells	of	the	matrix	contain	rights,	which	can	include	access,	delegation	and	???	rights.

Note	that	the	‘own’	right	does	not	imply	all	rights;	rights	have	to	be	assigned	explicitly.

Access	matrices	tend	to	be	large	and	sparse.	Alternative	implementations	include	authorization	tables	
(storing	only	non-null	entries),	access	control	lists,	where	the	matrix	is	stored	by	column,	or	capability	
lists,	which	store	the	matrix	by	row.

In	access	control	lists,	rights	are	stored	close	to	resources.	The	main	downside	is	that	it	is	difficult	to	
audit	the	rights	a	user	has.
In	capability	lists,	rights	are	stored	close	to	users.	While	this	makes	it	easy	to	audit	a	user’s	rights,	it	also	
makes	it	difficult	to	revoke	rights	assigned	to	users	(because	the	file	does	not	have	information	on	which	
users	have	permissions	for	it).

∗ 𝑝𝑒𝑟𝑚 is	a	right	that	not	only	allows	the	right	𝑝𝑒𝑟𝑚,	but	also	allows	the	user	to	delegate	the	right	
𝑝𝑒𝑟𝑚 to	others.

State	transitions	are	described	by	commands.	Command	structure:
Command c(x1, …, xk)

if x_r_1 in A[x_s_1, x_o_1]
And x_r_2 in A[x_s_2, x_o_2
Then
Confer …
Confer …

End

Copy	flag	(*):	subject	can	transfer	privilege	to	others
Transfer-only	flag	(+):	subject	can	transfer	privilege	to	others	(including	the	flag	on	it),	but	they	lose	the	
privilege	when	they	do	so.

Exercise:	write	a	command	which	allows	a	process	p	to	create	a	new	process	q	where	parent	and	child	
processes	can	signal	(read/write)	eaach	other.

Command create_process(p,q)
Create subject q
Enter own into A[p,q]
Enter r into A[p,q]
Enter w into A[p,q]
Enter r into A[q,p]
Enter w into A[q,p]

End

Exercise:	compute	the	access	matrix	that	results	from	the	following	initial	state	by	executing	the	
sequence	of	commands	α defined	as	follows:	(see	slides	for	commands	&	initial	state)

File 1 File 2 File 3

Alice own
Bob own

Charlie own

David +read

Since	file	3	already	exists	when	Charlie	attempts	to	create	it,	that	creation	attempt	will	fail.	After	that,	
since	he	is	not	the	owner,	he	cannot	confer	a	right	on	it.
The transfer-only command moves the +read right from Bob to David.

Even though Charlie is the owner of file 2, he cannot transfer the read right 
to Alice (since he does not have the *read right); if he wanted Alice to have 
this right, he should have conferred it.

Subjects	exercise	rights	(and	are	
subject to	policy),	while	objects	
have	rights	exercised	on	them.

Lecture	2
Friday,	9	September	2022 15:28


